
Fermi National Accelerator Laboratory

FEIwzILAB-Conf-93/135

Automatic Differentiation of Limit Functions

Leo Michelotti

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

May 1993

Submitted to the 1993 Particle Accelerator Conference, Washington, DC., May 17-20, 1993

e Operated by Universities Research Ass&ion Inc. under Contract No. DE-ACOZ-76CH03000 ~4th the United .%&as Depachrmt of Ener(~

Disclaimer

This report was prepared as an account of work sponsored by an agency ofthe United States
Gouernment. Neither the United States Government nor any agency thereof nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability
OP responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government OP any agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency
thereof.

Automatic Differentiation of Limit Functions

Leo Michelotti
Fermilab’, P.O.Box 500, Batavia, IL 60510

Abstract

formal, and how it works is not obvious to naive intuition-
ists. It is hoped that the following heuristic argument will
be easier to understand white retaining essential points of
the proof.

Automatic differentiation can be used to evaluate the
derivatives of and set up Taylor series for implicitly de-
fined functions and maps. We provide several examples
of how this works, within the context of the MXYZPTLK
claw library, and discuss its extension to inverse functions.

Let f : R + R possess a fixed point, z’. The sequence
zn+, = f(x,,), started “close enough” to z*, converges to
z * provided that 1 f’(z*) 1 < 1. Now consider the recur-
sion,

I. INTRODUCTION.

z”+l(m) = F(+“(m), m) , (1)

and assume that it converges to a fixed point, z*(m), for
a given m. This requires that

The techniques of automatic differentiation [Z] and differ-
ential algebra 11, 3, 91 are rapidly becoming a standard
part of accelerator physicists’ arsenals. That automatic
differentiation can be used to calculate the derivat,ives
of recursively or iteratively’ defined functions is not as
well appreciated as it should be. Applying recursive atgo-
rithms directly to DA variables2 provides an easy method
for obtaining derivatives of such functions. In the fol-
towing sections we shalt (a) sketch the essential argument
needed to prove this assertion, (b) discuss two examples
written using the C++ classes in MXYZPTLK [5, 61, and
(c) provide C++ code fragments for a general program.
This paper builds on work done previously [7] but re-
mains necessarily short. Applications of the techniques
described are too numerous to mention and so obvious
that there is no need to do so.

z’(m) = F@*(m), m) and 1 &F(z*(m), m) 1 < 1. (2)

Differentiating both Eqs.(l) and (2), we get the following
resutt.

d’(m)(l - &F(Z’(??a), m)) = ozF(z*(m), m)

4+1 = &&F(%, m) + My%, m)

where primes denote differentiation with respect to m,
and & means differentiation with respect to the V” argu-
ment. The defect between zk+l and z*‘(m) can therefore
be estimated as follows.

II. HEURISTICS FOR A PROOF

Following [7], a mathematically correct proof that recur-
sions can be extended to DA variables was published by
Gilbert [4] for single derivatives; its extension to higher
derivatives is implied. The proof’s correctness makes it

‘Operated by the Universities Research Association, Inc. under
contract with the U.S. Department of Energy.

‘I conkss to being confused about the distinction between ‘Ye-
cursive” and “iterative.”

z;+1 -d’(m) = (a$ - z*‘(m)) &F(Z”, m)

- [z*‘(m)(l- ~l~(%, m)) - &F(z,,m)]

m (z:, -2*‘(m))&F(z’(m),m)

- [z*‘(m)(l - &F(z*(m),m)) - a,F(z*(m),m)]

= (z:, - d’(m))a,F(z’(m), m)

As tong as Eq.(2) is satisfied, i.e., as tong as the original
sepuence conuerges to a fired point, the defect decreases
and tim,,, z; = z”(m). Higher derivatives work as welt.
The important thing is to recognize that simultaneously,

z’[‘l(m)(l - &F(Z*(m), m))

= A(~‘[‘-‘](m),.*[*-*l(m), ,z*(m),m) , and

z:il = zyalF(z,,m) + A(“~-‘l,“pl.. .,Z”,rn)
2A DA variable canes information about derivatives of functions

as well the value of the functions. It is a computer implementation
of a “id” structure 181. , ,

The demon&&ion of a convergent sequence then goes
through exactly a.s with the first derivative. The only

condition that enters into play is Eq.(Z), which is nothing
more than the original requirement of convergence. These
arguments still go through for a dimension greater than
one, but the condition Eq.(Z) becomes a statement about
the spectral radius of the Jacobian, g(z’(rn),rn).

III. IMPLICIT FUNCTIONS

Consider the function z(m) defined implicitly by the equa-
tion

z(m) = COS(m z(m)) (3)

Simple recursion can be used to construct x(m) for m
in the approximate range, m E (-1.2,1.2), determined by
the condition Imsin(rn. z(m))1 < 1. A fragment ofsource
code that uses the MXYZPTLK DA object (class) to im-
plement this is shown below.

coord m (0.5):
DI x;
x = cas(m);
for< i = 0: i < 15: i++) x = cos(m * x);

This example used a coord variable for m, set to evaluate
derivatives of z(m) at m = 0.5. coords are the atomic DA
variables used to start calculations, basically the imple-
mentation of a projector. The behavior of the weighted
derivatives - which would be the coefficients in a power
series representation of x(m) - is shown in Figure 1; the
first five are plotted vasus loop index. Convergence is
seen to be rapid, although, as suggested by the proof, a
derivative does not begin to converge until the ones at
lower order have already done so.

IV. INVERSE FUNCTIONS

One of the most frequent application of recursion is to
compute the inverse of a given function. For example, ap-
plying Newton’s method to the equation tan(z(m)) = m
provides the recursion

zn+, = zn - cost, (sin zn - m co8 zn) ,

which converges to the function x(m) = arctan n~.~ The
recursion can be applied directly to DA variables. Us-
ing MXYZPTLK, the following short, simple C++ pre
gram follows the recursion explicitly through six steps and
prints out the value and derivatives oft for a given value
of m

#include "mxyzptlk.rsc"
main(int argc, char** argv) {

const int dim - 1;
const int waYeight - 5;
DASetup(dim, Max&sight, dim);
double a - atof(argvCl1):

3As an acceptableseed,we could set za(m) = m when /ml 5 1.4
and Q(m) = 1.4 when [ml > 1.4.

coord. (a 1;
DA 1. s, c;
int i, j, dC11;
x = .;
far< i = 0: i < 6; i++)I

s = sin{ x):
c - cos(x);
x = x - c*(s - 1*c);
printf("X-7.41f I', x.standardPart());
for< j = 1; j < 6; j++) {
dCO1 - j;
printf("X-7.41f ", x.derivative(d));

>
printf("\n");

>
>

When compiled and run with a commandline argument
of 1.2 it produced the output lines:

1.0198 1.0581 1.7697 4.7170 -1.67753 -30.666
0.9027 0.6776 1.9990 19.1460 119.009 531.937
0.8769 0.4280 -0.0384 7.3912 124.051 2092.93
0.8761 0.4099 -0.4015 0.5231 2.2807 101.790
0.8761 0.4098 -0.4031 0.4571 -0.3575 -0.8372
0.8761 0.4098 -0.4031 0.4571 -0.3575 -0.8414

Notice the repetition of the earlier pattern: derivatives
settle down to their limiting value in sequence. In par-
ticular, the highest order derivatives can undergo unset-
tlingly large excursions before convergence kicks in. How-
ever, this is not a danger, as evaluation of higher order
derivatives could be suppressed, if needed, until the lower
order ones have converged.

The wonderful thing is that we could start the recursion
using any DA variable for m, not just atomic projectors.
We could, for example, use a code fragment like the fol-
lowing

coord y (ay 1. z (az);
DA .* i. s. c:
. - sqrt(y*y + z*z);
x = .;
while< x.isChangingO){
s = sin{ x);
c = cos(x);
x - x - c*(s - m*c):

?

to find derivatives of arctan m evaluated at
(y, z) = (ay, az). This little loop thus becomes the com-
putational core of a DA -valued function that returns the
arctangent of any DA argument.

v. A GENERAL PROGRAM

Because DA variables possess a differentiation operation,
Newton’s method can be used to write a general method
that works with “arbitrary” DA functions F. The key line
that sets up the solution4

'This is written inefficiently; it would be better to avoid evalu-
sting F twice.

1 1 1 I r

0.8 __........._.......; __.................; .

-0.6 L
0 2 4 6 8

!”

!”
?n.

!n

20

I(

Figure 1: Behavior of the coefficients with iteration number,

G - I - (F(x) / F(x) .Dh)) ;

where G and x are DA variables, F is a DA -valued function
of a DA argument, and .D is the differentiation operator.5
C will be a DA variable corresponding to a single Newton
step. Once it is constructed, iterating the line

x - G.multiEval(x);

will make x, with all its derivatives, converge to a zem of
F. To repeat the example of Eq.(3), we then define

DA F(DAL x) { return (x - COB(.*x)); >

before entering the main function. The complete pro-
gram, although short (about 60 lines) is too long to
be included here. For those would like to experi-
ment with the program and who have a C++ com-
piler, it and the MXYZPTLK package can be ob-
tained as is via anonymous ftp from calvin.fnal.gov
in the directory /pub/outgoing/michelotti/mxyzptlk or
/pub/outgoing/michelotti/beamline.6

REFERENCES

[I] Martin Berz. Differential algebraic description of
beam dynamics to very high orders. Pnrticle Accel-
emtors, 24(2):109, March 1989.

(21 G. Corliss and A. Griewank, editors, Avtomalic Oif-
ferentiotion of Algorithms: Theory, Implementation,
and Application. SIAM, 1991. Philadelphia, PA.

[3] Etienne Forest, Martin Berz, and John Irwin. Nor-
mal form methods for complicated periodic systems:
A complete solution using differential algebra and lie
operators. Particle Accelerators, 24:91, 1989.

[4] Jean Charles Gilbert. Automatic differentiation and
iterative processes. Optimization: Methods and Soft-
wore, 1(1):13-21, 1992.

[5] Leo Michelotti. MXYZPTLK and BEAMLINE: C++
objects for beam physics. In Advanced Beam Dy-
namics Workshop on Effects of Errors in Accelero-
tops, their Diagnosis and Correction. (Corpus Christi,
Tezas. October S-8, 1991). American Institute of
Physics, 1992. Conference Proceedings No.255.

PI __ MXYZPTLK: A practical, user-friendly C++
implementation of differential algebra: User’s guide.
Fermi Note FN-535, Fermilab, January 31, 1990.

[71 __ A note on the automated differentiation of
implicit functions. Technical Memo 1742, Fermilab,
June, 1991.

[S] Gordon Pusch. Private communication.

[9] Joseph Fels Ritt. Differential Algebra. American
Mathematical Society, New York, 1950.

5n is an integer array needed by .D; essentially, n tells .D which
derivative is desired.

6These files may be moved eventually.

